
PH YSICAL RK VIE% 0 VOLUME 19, NUMBER 10 15 MAY-- 1979

Small tleformations of the Prasatl-Sommerfielfl solution

Stephen I.. Adler
The Institute for Advanced Study, Princeton, ¹mJersey 08540

(Received 24 January 1979)

I study solutions of the static Euclidean anti-self-dual SU{2) Yang-Mills equations which differ by a small
perturbation from the Prasad-Sommerfield solution. I find explicit expressions for two series of perturbation
mode functions of angular momentum I and even and odd parity, and classify the modes according to several
criteria. There are seven nondilatational modes which have singularities removable by gauge transformation:
3 translations {I = 1), 1 gauge mode (I = 0), and a family of 3 odd-parity gauge modes {I = 1). The
translations and 1 = 0 gauge modes have nonvanishing, and normalizable, projections into the background
gauge, while the odd-parity I = 1 modes have vanishing projection into the background gauge. Among the
singular modes, there are an infinite number of modes, irregular at r = 0, which nonetheless satisfy the
boundary conditions for finite-energy solutions on the sphere at infinity. I show, by discussing the analogous
problem of the axially symmetric solutions of the stationary Einstein equations, that non-normalixable modes
are relevant in determining whether a spherically symmetric solution of a nonlinear system has axially
symmetric extensions, The analysis of perturbations around the Prasad-Sommerfield solution implies that if
an axially symmetric extension exists, it cannot be reached by integration out along a tangent vector defined
by a nonvanishing, . nonsingular small-perturbation mode of the class explicitly constructed.

I. INTRODUCTION

In two recent papers" I proposed that a static,
Euclidean self-dual (or anti-self-dual) SU(2) back-
ground-field configuration may act as the quark-
confining "bag" in a classical treatment of the
quark static force problem. An investigation of-
the properties of the only explicitly known such
configuration, the spherically symmetric Prasad-
Sommerfield solution, showed that when intro-
duced as a background solution in the q —q force
problem it produced an increase in the q -q static
potential, but that the effect was not strong enough
for large q -q separations to give confinement.
This result raises the question of whether there
exist "stretched, " axially symmetric extensions
of the Prasad-Sommerfield solution, for which the
quarks can remain in a strong color-field region
for arbitrarily large separations. Such a configu-
ration would be a prime candidate for a confining
background field.

One natural way to investigate whether the
Prasad-Sommerfield solution can be extended into
an axially symmetric family of solutions is to
study general Euclidean (anti-) self-dual SU(2)
fields which differ from the Prasad-Sommerfield
solution by a small perturbation. In Sec. II I ob-
tain an explicit solution for two series of small-
perturbation mode functions of angular momentum
l and even and-odd parity. In Sec. IIIA I classify
these mode functions into two types, according to
whether or not their singularities are removable
by a gauge transformation. There are seven non-
dilatational mode functions with removable singu-
larities and I find their projections into the back-
ground gauge. In Sec. III B I reclassify the mode

functions according to the much weaker criterion
of whether they satisfy the boundary conditions
for finite-energy solutions on the sphere a~0 in-
finity. In Sec. IV I discuss the implications of the
small-perturbation analysis for the question of
whether "stretched" extensions of the Prasad-
Sommerfield solution exist. The results of Sec.
III provide no positive evidence for the existence
of such extensions, but (as I show by several ex-
amples) are compatible with the existence of ax-
ially symmetric solutions which are not simultan-
eously analytic functions of their coordinates and
their deformation parameters around the Prasad-
Sommerfield solution. Gauge transf ormation and
propagator formulas used in the text are given in

Appendices A and 8, respectively. A procedure
for integrating parity-odd first-order perturba-
tions to higher order, in the background gauge,
is given in Appendix. C.

II. EXPLICIT SOLUTION FOR THE MODE FUNCTIONS

I consider static Euclidean SU(2) fields des-
cribed by a gauge potential 5" = (50, 5~ ) and color
electric and magnetic fields E~, 8', with

E' =-D,6',

In 'Ref. 2 I showed that all such field configura-
tions with a finite energy integral

d'x(E'E'+5' 5') (2)

are characterized by two asymptotic parameters,
a dimensional parameter a, and a homotopy index
n, defined by
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»» = lim I50(~)I, 0 = lim b»(x),

»» = lllll d&S» clibea&c 6a $b $c (3)9 8
8n' 8x 9g

which satisfies

g)" M =JI/I D"
p —, (s)0 r

Da =b0 x D» = . +$»x0 0 r 0 ggl 0 (10)

& = 5'/I 5'I

I will-study in what follows anti-self-dual field
configurations, for which

(4)

with homotopy index & =1. Since E»1. (4) is scale
invariant, solutions with general I(+ 0 are genera-
ted from solutions with I( =1 by a simple rescal-
ing, and so I will assume c =1 henceforth. This
restriction implies that the procedure for genera-
ting small-fluctuation modes developed below will
yield only nondilatational modes.

The only presently known finite-energy solution
of E»1. (4) is the Prasad-Sommerfield' solution (j
is the unit vector along the j axis)

5 =r ——t:tahr)
A 1

o 7

&' =(Jx r) --
0 sinh&

r =IxI, r =x/r .
A useful procedure for generating further solu-
tions to E»l (4) is.provided by the "singular
gauge" ansatz'

5(a) = —V lnO',

b,»
&

—i j —(jx V) ln»I,

which on substitution into E»ls. (1) and (4) yields
a linear equation for ().

V2O =0 .

~(s)0 (s)0 r (s)0 g + ~(s)0Bx

Unfortunately, the utility of the ansatz of E»1. (6)
for generating physically interesting solutions of
the anti-self-dual equations is limited by the fact,
proved by Manton, that only for the Prasad-Som-
merfield case can one find a gauge transformation
which makes the imaginary part of the solution .

vanish.
In studying the problem of small fluctuations

around the Prasad-Sommerfield solution, how-
ever, the fact that E»1. (6) leads in general to
complex solutions is an advantage. The reason
is that given a general complex solution to the
equations for a small anti-self-dual fluctuation
around a real background, the real and imaginary
parts of the solution must individually satisfy the
small-fluctuation equations. Since the real and
imaginary parts of M'~ have opposite parity, this
leads to a general method for constructing two
series of even- and odd-parity small-fluctuation
mode functions of arbitrary angular momentum,
as follows. Let i, (r), k, (r) be the regular and
irregular vector spherical harmonics for a com-
plex argument,

i, (r) =(-i) j ('r)

k, (r) =(-i)» k'»" (ir),

i (r)=, k (r)=-sinh&

(11)coshr sinhr
k ( }

1+r

Manton'. has shown that the Prasad-Sommerfield
solution of E»1. (5) is obtained by taking»I =sinhr/r
in E»1. (6) and then making a complex gauge trans-
formation. Specifically, for the scalar potential,
which transforms like a gauge vector, this con-
struction gives

Slnh&
8)0

sinhr 3 sinhr 3 coshri r = +0 r y3- y2

( )
r + 3r + 32' ~3

In the singular gauge, a small perturbation about
the Prasad-Sommerfield solution can be obtained
by taking

kaQ Mab(+) kb0

with M'~ the complex rotation matrix m--l
a, i, (r) Y,„(r)"

M" (x) =coshr(6"- r'r"')
—i Slnht' 6' & +& ggp m ~g

b» k, (r)F» (r},
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since this construction makes 0 a general solu-
tion of V'o =o as expressed in spherical coordi-
nates. Writing

5b(0&= —sinhr(rxV) . —A
sinh&

(17a}

sinn' ' r
lno'=ln ----- - +ln 1 — . A +lnC

sinh&

=ln — ~ A +O(tP}+inC,
sinh&

sinh&
(13}

+coshr V- ~ —
& A

(17b)
a solution to the small-fluctuation problem in the
singular gauge is given by

5(s) 5(s)0+55(s&

I!5(,.= o os

sr�

(jx S ) — — n)sinh&

(coshr —))r(rxS)' h).sinh&

55s(,
&

=v . A
sinh&

One still has the freedom to modify Eq. (17) by a
gauge transformation of the form

~5(. )
- 55(.) +L)"s &(.&

(18)
Since 55" transforms as a vector under gauge
transformations of the Eeroth-order solution, the
small-fluctuation solution in the physical gauge
[where the Prasad-Sommerfield solution takes the
manifestly real form given in Eq. (5)] is

5bs" =M's (x)i)bs()'),

~E'+~8' =0,

5E =-D 55 +D 5b

5pj e is( Ds 55l

(18)

Separating the complex solution of Eq. (15) into
real and imaginary parts gives two linearly inde-
pendent real solutions of the small-fluctuation
equation, with even and odd intrinsic parity, re-
spective1. y, in the original gauge:

and by construction satisfies the small-fluctuation
equation

7=&4, +@8+44~,

with („s & arbitrary scalar functions and with

0, (t) the unit vectors in spherical coordinates.
The explicit form of this gauge transformation,
and useful formulas for differentiating spherical
unit vectors, are given in Appendix A. It turns
out that Eq. (17), as it stands, is in a form con-
venient for analyzing the irregular eigenmodes
(those with A ~ F) kl }, while to analyze the regu-
lar eigenmodes (those with A (h: Fl i, ) it is con-
venient to regauge Eq. (17) to make 550«& purely
radial, by choosing

(ti(, )
-rx (rx V)

sinhr A

1

(19)

in Eq. (18}. This gives the alternative forms in
the radial gauge:

55'(,
&

——0,

c5(.)-—r(s' —i' —) (
—)-(s —r —)c'( . )+ sinhr(r'0 —j —) (coihr ——) —.
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8 1—r xj coshr — cothr ——

. „.),8

Br sinhr

A - - . ~coshir A A 1 A
56'& &=r(rxV)' . -(rxV)8'~ . +r' coshr(r x V) cothr-—

rs i, i, -~

A 1 8 eoshr A

(20b)

The radial gauge functions still have an additional gauge arbitrariness of the form

55~„, —55~„&+D",[ry„].
Some additional formulas which are useful in analyzing the regular mode functions are, in the radial gauge,

r 5]&~.&-(r x V)~
r~l

e "A 1 A~
5b'&

&
-r x 5b'&,

&
=r(r x V)' . —(r x V)8& . +r' e "(r x V) cothr-—

8 1 A] 1 8 e A']
rxg-e" —cothr ——

Br - r i~ i r Br i~ j

(22)

III. CLASSIFICATION OF MODE FUNCTIONS

A. Classification of mode functions with removable

singularities

I turn now to the problem of classifying the mode
functions constructed in the preceding section, a,nd

begin by analyzing which modes contain only sin-
gularities which are removable by an appropriate
gauge transformation [the general form of which
was given in Eq. (18)]. Since the prasad-Sommer-
field solution is spherically symmetric, it suf-
fices to do the classification only for modes with

I define four series of mode functions,
obtained by the following substitutions in Eqs.
(17) and (20):

QbP
g irregular (y )

L regular(, ) =1,
L irregular (-)

'
regular (+)

L regular( ) = 2 ~

(24)

Consider first the irregular modes. Near r =0,
one has

1 1
k, =C, rs„+0 ~, C~WO (25)

(26)

and so from Eq. (17b) we find for the (-) modes

5bb
irregular (- )

, ,' [&&t+ &) P +& siaS P~]+O(;., ) .
A k, (r) P, (co-se) in Eq. (17a),

~~g irregular ( ) ~

A-k, (r)P, (cose) in Eq. (17b),
~p

g regular(+) '

A -i, (r)f', (cose) in Eq. (20a),

(28)

The term proportional to r/r" cannot be removed
by any gauge transformation, and so the irregular
(- ) modes have irremovable singularities at r =0
for all f ~ 0. For the (+) modes we have

5b, „„~(,) =C, „,sin& P,'+0
zwP~by regular ( ) ~

A-i, (r)f', (cose) in Eq. (20b).
Qbf 0irreguhr (+) r &+&

(27)

As the first step in the classification, I show
that for E ~ L these mode functions have singular-
ities that cannot be removed by any gauge trans-
formation, with the L values for the four series
given by

Now f» l ~ 1, P,'wO, but since b~~rr for small.
r, the term &t&/r" in 5b'&;„„~„&„&can only be
removed by a gauge transformation with g~
&x:I'& sine/r'", which induces new singular terms
in 5b', ]N,l & &,&

behaving as 1/r"'. Hence the
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irregular (+) modes have irremovable singular-
ities at r = 0 for all E» 1.

Consider next the regular modes. In the asym-
ptotic region one has

(28)

and so from Eq. (20b) we find for the (- ) modes

r
()b,' „zi„& )

=
2

—,(8((i' [P,(D, ~1)—P,' cos8]+ (t) 8~ [P', cos9 —P, (D, +1)—P&' sin'8]j+0(e"/x') . (29)

Since P, /P,'cos9 is not a constant for f ) 2, the coefficient of 9$) is nonvanishing and reference to Appendix
A shows that this term cannot. be removed by a gauge transformation without inducing terms in
()b, «,»«& ) which grow asymptotically as e". Hence the regular (-) modes are asymptotically exponen-
tially growing for all l ) 2. Finally, from Fq. (22) we lear that the difference between ()b'& ) and r &( ()b)&,),
as well as r ~ 6b'„„cannot grow exponentially in the asymptotic region, and so we have

5b~«e~i«&, &

————,Q& &t(') [P,(D, + 1) —P', cos9] —I)8J [P&» cos8 P, (D—, + 1) —P,"sin'9]]. + 0 (e"/r') .l reguar {+)— 2 r2 (3o)

l =0 (m =0) irregular (+),
1=1 (m =0, + 1) regular (-),
f = 1 (m = 0, + 1) regular (+ ) .

I discuss their properties in turn.

J. l = 0 I'm = 0jirregular (+)

Making the substitution

(31)

The coefficient of QQ) is again nonvanishing for
all l ) 2, and reference to Appendix A shows that
this term cannot be removed by a gauge trans-
formation without inducing other exponentially
growing terms. Hence the regular (+) modes
are also asymptotically exponentially growing
for Eo 2

This analysis leaves as candidates for nonsin-
gular perturbations the following seven modes;

gauge modes into the background gauge, and, then

apply it to Eq. (33). Consider the general gauge
mode

and let its covariant divergence be

Djfgb jf

Then in terms of the scalar, isovector propagator
L' (x, y) defined by

[D~PDu 4(x y)] 8 8 (» y) (37)

the projection of Eq. (35) into the background gauge
is given by

()5(b, )
= Do"(x+ &j)) (39)

&'(*) = J»'»»"(», »(»'(»(,

A =ko{r) =-e "/r

in Eq. (1Va) gives

'i=o,*...&-() =o= o(-")

b&=oin i (+) sinhr

=-(Ã'+ jp) sinhr

=Do(-~),

(33) (39)

we have

&"(») = f »'»&'(», »(. &!,&l,x(»)

since Eq. (38) clearly satisfies Eq. (34). Let us
now evaluate &j( by integration by parts, being
careful to keep surface terms. Introducing a
natural vector notation for the 6-index dependence
of S"(x,y),

[X'(x, y)]' =- ~"(x, y),

where I have used Eq. (A4), with &j), =-1, to show
that this is a pure gauge mode. Although Eq.
{33)is singular at w =0, the singularity is clearly
removable, and I will show explicitly that it is
removed by projection into the background gauge,
defined by

0 = a~ ~b~&„&

b(bg) + ~ +b x 5b(~g) .

I first give a general procedure for projecting

d'».",D.",&'(x, y) . X(X) + &'(x)

= -x'(x) + Z'(x),

Z'(x) = lim y
' d g, y~[~'(», y) ~ Di X

—D.',&'(», y) x].
Hence comparing Eqs. (38) and (40) we get,

&b~(b, ) =DOE;

(40)

(41)
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that is, the projection of a gauge mode into the
background gauge comes entirely from the surface
terms at infinity in Eq. (40). If y is bounded at in-
finity, then the only terms in 4' and -D„4'
which contribute to Z' are those which behave re-
spectively as y ' and y

' in the asymptotic re-
gion. These are readily obtained from the propa-
gator formulas in Appendix B to be

~g ag 1 1
A =x cothx- — —+O(y ) ~

4m y
(42)

8
bp =r 2 — . 2 cos8r' sinh'r

—
8 b, -=( rp-+yrj) sineZ r sinhr

sinh'r r'

(47)

D-A =x' cothx- — +O(y ) ~

~g 1 1
ov x 4v y'

Returning now to the gauge mode of Eq. (33) and

applying this formalism gives
A

X =-Xy

(43)
DO,X =0+0(y )

yj(-D~ A') ~ g =x' ——cothx 4ny' +o(y ')

Comparison with the formulas of Appendix A
shows that Eq. (47) can be brought to the form of
Eq. (46) by 'adding Dog, with g=r 'sin8$. Since
Eq. (47) is nonsingular at r =0, this shows that
the singularities of Eq. (46) at r =0 are remov
able. To put the translation modes into back-
ground-gauge form, it is not necessary to do a
projection using the scalar propagator. Bather,
one can use the fact" that if P is a solution of
D,"D, /=0, then

6b(Q) 0 —gP y

giving for the l =0, irregular (+) mode in the back-
ground gauge

6g'» =@I„~D"P, a=1, 2, 3

1 ~p
Z =r ——cothr =br p.p (44)

(-) (-)
Og&a 1vkac~ Okla ~k$gy

The fact that Eq. (44) has zero covariant diver-
gence is obvious from the fact that b, satisfies
the zeroth-order equation D,"D,"b,' = 0. Equation
(44) is also singularity free, and gives the pre-
viously known' normalizable gauge mode.

'I

2. l = 1 (m = 0, + 1)regular (-)
Making the substitution

are four linearly independent solutions of the
small-fluctuation equation in the background
gauge. For Q =b00, one has D0$= 0, Dg=- Eo
"1/r2 for large r, and so the mode functions
given by Eq. (48) are nonsingular and normaliz-
able. The mode 5b( '~ is just the normalizable
gauge mode of Eq. (44), while the modes 5b"'~,
+=1,2,3 just give the p axis translations in the
background gauge.

A =i,(r)P, (cos8) =l, (r) cos8 (45) 3. l= J. (m=0, +1) regular(+)

into Eq. (20b) and carrying out the differentiations
gives for the /=1, m=0 regular (-) mode in the
radial gauge

I
ObP =r" cos~ r 2 sinh'r

(46)
z sin8

&
sin8rr' r sinhr

+($8~- PP) cos8
sinh2r

To see that this is just the z-axis translation
mode in the radial gauge, consider

»om Eq. (22), we see that whenever the
regular(-) modes are well behaved at r =~, the
regular(+) modes are also well behaved. Hence
we expect the 1=1 (m=0, +1) regular(+) modes
to yield small-fluctuation solutions with re-
movable singularities, and this is borne out by
explicit calculation. Substituting

A =i, (r) cos8 (49)

into Eq. (20a) and carrying out the differentia-
tions gives for the I = 1, m = 0 regular (+ ) mode in
the radial gauge



19 SMALL DEFORMATION S OF THE I'RASAD-SOMMERFIELD. . . 3003

5b' =0 =D', (r cos8),

5b =(88 +QQ ) . —r8cos6) -& sine
sinhx

(50)

of modes is obtained by applying only the boun-
dary condition at infinity,

0 =lim 5b~, (53)

y~Z' D~o„g=0+O(y 3),

y~(- D~ Z') y=x' cothx- —, , +O(y 3),
Oy x ]'4my

1Z'=x cothx- — dQ cos8 =0.
x

(51)

Hence the three /=I regular(+) modes vanish
identically when projected into the background
gauge.

This completes the classification of all non-
dilatational small-fluctuation modes obtained
above according to whether or not they have re-
movable singularities. As noted in See. II,
the restriction to tc=1 implies that the procedure
which has been followed will not yield the dilata-
tional mode, which is associated with changes in
the dimensional parameter». This mode (which
has 1=0) is easily obtained by scale differentia-
tion of the Prasad-Sommerfield solution of Eq.
(5)

5b~~, =—»bo(»r)

=Do~(r cos 8),
where I have used Eq. (AS), with p„=cos8, to
write this as a gauge mode. The singularities of
Eq. (50) are clearly removable, and the projec-
tion into the background gauge is readily found

by application of Eqs. (40) and (42), which give

X =g cos8„,

~~ j~ cosev ~ j sln6
D0yX=&j XJ t s h Joy

which is expected to be satisfied by any nondila-
tational variation of a finite-energy static Eu-
clidean gauge field. Clearly, Eq. (53) is satis-
fied by the seven modes with removable singu-
larities and in addition by all of the irregular
modes, which are singular at x=0 but are
asymptotically exponentially decreasing. The
regular modes with irremovable singularities
are asymptotically exponentially increasing, and
so do not obey Eq. (53) .

IV. MSCUSSION

I turn now to a discussion of the significance
of the results of the preceding two sections for
the question raised in Sec. I, of whether the
spherically symmetric Prasad- Sommerfield
solution has nonspherical, axially symmetric
extensions. The first point to be made is that
while in the analogous instanton classification
problem there is a one-to-one correspondence
between parameters in the most general solution
and nw'mglizgble zero modes, this need not be
the case; a family of solutions to a set of non-
linear equations can contain parameters related
to non-normalizable zero modes. A familiar
example of this is provided by the Kerr family
of solutions to the stationary, axially sym, metric
Einstein equations. Let us regard the Kerr me-
tric g»„, in the limit of small angular momentum/
unit mass a, as a perturbationa of the spherically
symmetric Schwarzschild metric gs„,

E: S
g'I v=8'y, v+&I v ~

g$ gg~gg" = 1 — — gt2 1 gy2

=r" —cothe+
sinh r

85b~ = »b~(»r—)Oil eg 0

(52)
—r2(d82+sin 8 d$2),

2gM
h, ~ =k~, = sin g,

(54)

1 x cosh'= Jxy sinhr ' sinh'r )'
and is already in background-gauge form.

8. Mode functions which obey the boundary conditions
for finitewnergy solutions at r = ~

As I will discuss in Sec. IV below, the modes
with removable singularities may not be the only
ones of interest in studying whether the Prasad-
Sommerfield solution has axially symmetric
extensions. Another relevant classification

g ""h~„=0,

sA, ""
Qvv +p$ p. g)i,v+psvt p, g 0Xv Xv

(55)

However, in the norm natural to the perturbation
problem around the Schwarzschild background, '
I, „is non-normalizable,

(p~) ~(fe) (0&)

It is easy to verify that h~„of Eq. (54) is in the
transverse, traceless gauge (the general-
relativistic analog of the Yang-Mills background
gauge) in the Schwarzschild background,
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(h, h) =- dgdy( +s)1/2I I +sgk+svs

sine d8dg 2g~ "(-g
~~ ~) j'g, '

32mg M 2M (56)

In fact, as Gibbons and Perry' show, the only
normalizable zero modes of .the Schwarzschild
metric correspond to the infinitesimal transla-
tions, which must be taken into account by use
of collective coordinates in functional integral
quantization around a Schwarzschild background,
On the other hand, spin-ups of the Schwarzs-
child metric do not lead to functional integration
collective coordinates, even though they do
correspond to a parameter present in the ex-
tended Kerr family of solutions. Similarly, if
the Prasad-Somrnerfield solution is a member
of a more general axially symmetric family of
(anti-) self-dual solutions, the deformation para-
meters need not correspond to normalizable
zero modes.

To establish a framework for analyzing the
results of Secs. II and III, let 5 denote the func-
tion space containing all static Euclidean anti-
self-dual SU(2) fields, irrespective of boundary
conditions which are imposed to specify solu-
tions of physical interest. The Prasad-Sommer-
field solution is a point 6' in this function space.
Although 5 is not a vector space, we can define
a tangent vector space & at 6' as the space of
solutions of the linearized small-fluctuation
equations around the Prasad-Sommerfield solu-
tion. Each small- fluctuation eigenmode, when
projected into the background gauge, gives a
tangent vector extending from 6' into the func-
tion space 5'. [In the case of parity-odd per-
turbations, defined by 5b~(- x) =- 5b~(x), a
simple systematic procedure for integrating in
the background gauge out from 6' into 5 is given
in Appendix C.] Since we have ignored boundary
conditions in the small-fluctuation analysis, we
can expect that many (perhaps almost all) of
these tangent vectors lead to anti-self-dual solu-
tions in 7 which are "near" to 6' but which are
physically unacceptable, because they are singu-
lar and violate the finite-energy condition. In
order to relate properties of the tangent vectors
to properties of the nearby solutions, an analy-
ticity assumption is needed. I consider two
cases:

Case I. Nearby solutions which are analytic
functions of their coordinates in the strips

~

Imx'~ &
g and which are analytic functions of

their deformation parameters in a ball around N.
In this case; the tangent vectors obtained by

differentiating the nearby solutions with res-
pect to parameters will be nonsingular in
0 &r &~. In Sec. III I showed that, when the
dilatation mode is included, there are among the
modes explicitly constructed eight small-fluctua-
tion eigenmodes with removable singularities.
Four of these have even parity [5b"(-x)
=5b~(x)] and correspond to (i) an l=0 gauge
automorphism, given by Eq. (44), which leaves
b', invariant and regauges bo/, and- (ii) three
I=1 (m=0, +1) translation modes, given by Eq.
(48). These four modes are the only normaliz-
able zero modes. The other four modes with
removable singularities have odd parity and
correspond to (iii) an I =0 dilatation mode,
given by Eq. (52), and (iv) three l =1 (m =0,
+1) gauge modes, the m=0 member of which
is. given in Eq. (50). Since the Prasad-Som-
merfield solution has odd parity [from Eq.
(5) it is evident that bf (- x) =- bf (x)], modes
(iv) have just the correct quantum numbers to
represent "stretch" distortions of the Prasad-
Sommerfield solution; they are analogs of the
spin-ups in the Schwarzschild perturbation pro-
blem. However, as I also showed in Sec. III,
modes (iv) have vanishing projection into the
background gauge, and hence do not give tangent
vectors to which the integration procedure of
Appendix C can be applied. Thus, it is not pos-
sible to reach a deformed extension of the Pra-
sad-Sommerfield solution 6' by integration out
along a tangent vector defined by a nonvanishing,
nonsingular small-perturbation mode of the class
explicitly constructed.

use II. Nearby solutions which do not have
the simultaneous analyticity in coordinates and
parameters postulated in Case I.

In this case, -one cannot establish a simple
connection between nearby solutions and pro-
perties of their tangent vectors. One can have
nonsingular nearby solutions with tangent vec-
tors which vanish identically, or with tangent
vectors which are singular at x=0 (or r=~).
An example of the former would be a perturba-
tion proportional to e " ', g &0; this is bounded
and has bounded spatial derivatives in 0 &r & ~
but has a vanishing tangent vector s/Bg~, ,
Such a behavior might be associated with the
/=1 odd-parity modes, which we saw degen-
erated into gauge modes, and vanished in the
background gauge, for dynamical rather than
kinematical reasons. " An example of the latter
would be a perturbation proportional to
e '"" "' —e ", which again is bounded and has
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bounded spatial derivatives in 0 +x (~, but
which has a tangent vector e/ea~, .o which is
singular at x=0. Such behavior might be
associated with any of the infinite number of
irregular modes discussed in Sec. IIIB.

Up to this point I have skirted the question of
whether the two series of mode functions ob-
tained above constitute gal of the anti-self-dual
small-fluctuation modes of the Prasad-Sommer-
field solution. This question in fact cannot be
answered within the framework of the explicit
construction I have used. However, there is
strong evidence' '3 for the existence of one ad-
ditional parity (-) series of mode functions, with
regular and irregular eigenmodes behaving at in-
finity as r', r '"" (l )1). It has already been
established'2 that the new series can contain no
further modes with removable singularities.

To sum up, the results of Sec. III argue
against the existence of analytic extensions
(in the sense defined above) of the Prasad-Som-
merfield solution, and are compatible with (but
provide no positive evidence for) the existence
of nonanalytic extensions. To do better will
require the use of nonperturbative methods.

ACKNOW LEDGMENTS

I wish to thank A. S. Qoldhaber, R. Jackiw,
and M. J. Perry for useful conversations. Re-
search supported by the Department of Energy
under Contract No. EY-76-S-02-2220.

cpa D(~) g,——

g =y„r-+q e+y y.
Explicit formulas for the unit vectors r, 8, Q in
spherical coordinates are

r =(sing cosP, sing sing, cos8),

K=(cos8 cosQ, cos8 sing, —sing),

Q =(- sing, cosQ, 0),
rxg=y, jxr"=g, exp =r";

some useful formulas for computing derivatives
in polar coordinates are

ir=r, ig= —8", cry =
y sin0

80 1
ex' r=—(-rd'+ ctojgp~),

ex' r=—(- rQ~ —cot88+) .

Using these, it is easy to compute the gauge
transformation generated by Eq. (A1), with the
result

APPENDIX A: GAUGE TRANSFOBMATION AND
SPHERICALXOORDINATE FORMULAS

Consider a general gauge transformation of the
small-fluctuation mode functions of the form

0~ + 1 1
Dog =8 cothr- —g~+$ ——cothr ge,

Dtg mr~ ' 4r=e~ — ' — +rP~ ' —- * +Hi~ +86~ — ' + ' )er r e8 sinhr r sing ep sinhr er r e8 sinhr

1 e(~ cotg( --& ep -"&1 e( ~p
1 eg + 0, +r sing ey r er r eg r sing ep sinhr r

APPENDIX 8: PROPAGATOR FORMULAS

The scalar, isovector propagator b,"(x,y) for
the Prasad-Sommerfield solution is given by the
formula

bX'y
0'4 =~ X

X

a"(x y) =— " Z"x
4g sinhx sinhy

Z"=Q o (x, y)X, (x, y);
3=1

b I b
Qb ggb+ y

1——
2 [f2(z„)+f2(z ) +f2(z, ) +f2(z,)],

~b

e", =x'y'- 0"x.y,
1 coshxcoshy —e ~ sinhx sinhyX2=

xy X
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1
&3=2„~ [-f2(&-) -f2(&-)

+fg(&.-) +f2(&-.) ]
1

fe*[f,(z,) +f,(~ )]

which are automatically satisfied by anti-self-
dual fields. Introducing a perturbation expan-
sion about a zeroth-order solution bo' of Eq. (Cl)
by writing

—e 'if&(&.-) +fi(&..)]]
1

A~
—— e" )z, +)z2yh

b~ =gab~,
a=o

imposing the zeroth- order background- gauge
condition in all orders,

(C2)

—e" (z, +, g„
a=fx-yf,
g„=x+y —6, z, =x- y —& )

g =- x+y —6, z =- x-y —&,

D(~)b~ =0, n=1,2, . . . (C3)

and equating like powers of A. , one gets the fol-
lowing set of equations for the perturbation co-
efficient functions:

e —1 —8
f,(~) = , f2(&) =

An inspection of these formulas shows that as
y-~ with x fixed, the only contribution of order
y

' comes from the X2 term. This gives

D'D"b" +2f ""xb" =00 0 1 0

D"D"b"+2f "~ xb~ =j"
0 0 n 0 . n n&

j „"= g (- 2b; x D,'b", +b; x D",b;)
0~1, J 1

0+ l=n

(C4a)

1 sinhy sinhxcoshx-
xy y . , x

x[l+g(y ')],

n''(x, y) =x' cothx- ———+0(y ),1 1 y~

x 4my

(B5)

f&~ 8&b~ e~b&+b& xb (Cl)

Do=box, D&= . +b~x,
Bx

as used in Eq. (42) of the text.

APPENDIX C: BACKGROUNDWAUGE INTEGRATION
PROCEDURE FOR PARITY-ODD PERTURBATIONS

To give a procedure for integrating first-order
perturbations around the Prasad-Sommerfield
solution to finite order, it is convenient to work
directly from the Euclidean SU(2) Yang-Mills
equations

D~f'"=0

j~1,A~1, l~1
j+0+ l=a

b)~ x(bq xb~() . (C4b)

For each tangent vector b", =5b" satisfying the
homogeneous small-fluctuation equation Eq. (C4a),
one can iteratively obtain the corresponding
higher-order perturbations b„", n, &I by using the
vector propagator Q'~'" of Eq. (32) of Ref. 2 to
invert Eqs. (C4b). This inversion is well-defined
in nth order provided that the current j „" is ortho-
gonal to the normalizable zero modes of the
zeroth-order solution. In the case when the
zeroth-order solution is the Prasad-Sommerfield
solution, the zeroth-order solution bo~ has odd
parity and its four normalizable zero modes have
even parity. Hence in this case a simple suffi-
cient condition for orthogonality is that the tan-
gent vector 5b" have odd parity, since then the
b„" and j „" will have odd parity for all n &1.
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